Βίντεο: Πώς αποδεικνύετε ότι τα τρίγωνα είναι παρόμοια;
2024 Συγγραφέας: Miles Stephen | [email protected]. Τελευταία τροποποίηση: 2023-12-15 23:35
Αν δύο ζεύγη αντίστοιχων γωνιών σε ένα ζεύγος τρίγωνα είναι σύμφωνες, τότε το τα τρίγωνα είναι παρόμοια . Το γνωρίζουμε γιατί αν δύο ζεύγη γωνιών είναι ίδια, τότε και το τρίτο ζεύγος πρέπει να είναι ίσο. Όταν τα τρία ζεύγη γωνιών είναι όλα ίσα, τα τρία ζεύγη πλευρών πρέπει επίσης να είναι σε αναλογία.
Σχετικά με αυτό, πώς αποδεικνύετε ότι τα σχήματα είναι παρόμοια;
Δύο φιγούρες που έχουν το ίδιο σχήμα λέγεται ότι είναι παρόμοιος . Όταν δύο φιγούρες είναι παρόμοιος , οι λόγοι των μηκών των αντίστοιχων πλευρών τους είναι ίσοι. Για να προσδιοριστεί εάν το τρίγωνα παρακάτω είναι παρόμοιος , συγκρίνετε τις αντίστοιχες πλευρές τους.
Μπορεί επίσης να ρωτήσει κανείς, τι είναι το Θεώρημα Ομοιότητας SAS; Θεώρημα Ομοιότητας SAS : Αν μια γωνία ενός τριγώνου είναι σύμφωνη με την αντίστοιχη γωνία ενός άλλου τριγώνου και τα μήκη των πλευρών που περιλαμβάνουν αυτές τις γωνίες είναι σε αναλογία, τότε τα τρίγωνα είναι παρόμοια.
Από αυτή την άποψη, πώς αποδεικνύετε την ομοιότητα ΑΑ;
Ομοιότητα ΑΑ : Αν δύο γωνίες ενός τριγώνου είναι αντίστοιχα ίσες με δύο γωνίες ενός άλλου τριγώνου, τότε τα δύο τρίγωνα είναι όμοια. Απόδειξη παραγράφου: Έστω ΔABC και ΔDEF δύο τρίγωνα έτσι ώστε ∠A = ∠D και ∠B = ∠E. Έτσι τα δύο τρίγωνα είναι ισόγωνα και ως εκ τούτου μοιάζουν κατά AA.
Ποια είναι τα 3 θεωρήματα ομοιότητας τριγώνων;
Παρόμοια τρίγωνα είναι εύκολο να αναγνωριστούν επειδή μπορείτε να εφαρμόσετε τρία θεωρήματα ειδικά για τρίγωνα. Αυτά τα τρία θεωρήματα, γνωστά ως Γωνία - Γωνία (ΑΑ), Πλευρά - Γωνία - Πλευρά (SAS), και Πλευρά - Πλευρά - Πλευρά ( SSS ), είναι αλάνθαστες μέθοδοι για τον προσδιορισμό της ομοιότητας στα τρίγωνα.
Συνιστάται:
Πώς αποδεικνύετε ότι οι γραμμές είναι παράλληλες στις αποδείξεις;
Το πρώτο είναι εάν οι αντίστοιχες γωνίες, οι γωνίες που βρίσκονται στην ίδια γωνία σε κάθε τομή, είναι ίσες, τότε οι ευθείες είναι παράλληλες. Το δεύτερο είναι εάν οι εναλλασσόμενες εσωτερικές γωνίες, οι γωνίες που βρίσκονται στις απέναντι πλευρές του εγκάρσιου και μέσα στις παράλληλες ευθείες, είναι ίσες, τότε οι ευθείες είναι παράλληλες
Πώς γράφετε παρόμοια τρίγωνα;
Τα τρίγωνα είναι παρόμοια αν: ΑΑΑ (γωνία γωνίας) Και τα τρία ζεύγη των αντίστοιχων γωνιών είναι ίδια. SSS στην ίδια αναλογία (πλευρική πλευρά) Και τα τρία ζεύγη των αντίστοιχων πλευρών είναι στην ίδια αναλογία. SAS (πλευρική γωνία πλευράς) Δύο ζεύγη πλευρών στην ίδια αναλογία και η συμπεριλαμβανόμενη γωνία ίση
Πώς αποδεικνύετε ότι δύο τμήματα είναι ίσα;
Τα ίσα τμήματα είναι απλώς ευθύγραμμα τμήματα ίσου μήκους. Σύμφωνο σημαίνει ίσος. Τα ευθύγραμμα τμήματα συνήθως υποδεικνύονται σχεδιάζοντας την ίδια ποσότητα μικρών γραμμών τικ στη μέση των τμημάτων, κάθετα στα τμήματα. Υποδεικνύουμε ένα ευθύγραμμο τμήμα σχεδιάζοντας μια γραμμή πάνω από τα δύο τελικά σημεία του
Πώς αποδεικνύετε ότι ένας πίνακας είναι υποχώρος;
Ο Συγκεντρωτιστής ενός πίνακα είναι ένας υποχώρος Έστω V ο διανυσματικός χώρος n×n πινάκων και M∈V ένας σταθερός πίνακας. Ορίστε το W={A∈V∣AM=MA}. Το σύνολο W εδώ ονομάζεται κεντροποιητής του M στο V. Αποδείξτε ότι το W είναι υποχώρος του V
Πώς αποδεικνύετε ότι οι γωνίες είναι ίσες;
Στη συνέχεια, αποδείξαμε τα κοινά θεωρήματα που σχετίζονται με τις γωνίες: Οι κάθετα απέναντι γωνίες είναι ίσες. Οι εναλλακτικές εξωτερικές γωνίες είναι ίσες. Οι εναλλακτικές εσωτερικές γωνίες είναι ίσες. Το άθροισμα των εσωτερικών γωνιών στην ίδια πλευρά του εγκάρσιου είναι 180 μοίρες